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SUMMARY

We give a more general derivation of the particle velocity and acceleration used in the numerical wave
model of Grilli et al. (Int. J. Numer. Meth. Fluids 2001; 35:829–867), by expressing these quantities
in a local orthogonal co-ordinate system. Computations of solitary waves propagating and breaking over
a sloping bottom show that the new formulation gives better results than the former one in the latest
stages of overturning. Nevertheless, both formulations are found to be as suitable for the simulation
of non-overturning waves. Results on wave pro�les as well as on surface and internal kinematics are
presented. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Grilli et al. [1], a three-dimensional numerical model was proposed for the simulation of
non-linear water waves over arbitrary bottom topography. This model solves the full equa-
tions for potential �ow using a high-order boundary element method (BEM) and a mixed
Eulerian–Lagrangian time updating. In this BEM, the boundary geometry and �eld variables
are represented by 16-node quadrilateral elements, providing bi-cubic local interpolation of
the solution in between nodes. High-order tangential derivatives, required for the time updat-
ing, are calculated in a local curvilinear co-ordinate system (�; �), using 25-node fourth-order
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quadrilateral elements. This intrinsic curvilinear co-ordinate system is used to express phys-
ical quantities such as the particle velocity and acceleration at each collocation node on the
boundary. The corresponding unit vectors (s;m; n) are de�ned as derivatives of the Carte-
sian position vector x with respect to the intrinsic co-ordinates. These are introduced to map
Cartesian boundary elements to a reference element of regular shape. Grilli et al. [1] assumed
that the so-de�ned local co-ordinate system is orthogonal, which is however not true in gen-
eral. The reason is that, in the mixed Eulerian–Lagrangian formulation, discretization nodes
are allowed to move with the �ow and boundary elements to distort as time progresses. In
particular, distortions of boundary elements can be very severe when computing highly non-
linear waves like overturning waves. The main purpose of this paper is to give a more general
derivation of the particle velocity and acceleration in a local orthogonal curvilinear co-ordinate
system and show that more accurate results can be obtained with this new formulation.
The remainder of the paper is organized as follows. In Section 2, we review the mathemat-

ical formulation of the wave model for the convenience of the reader. We derive in addition
the expressions of the internal velocity and acceleration �elds, which can be evaluated from
the boundary values. The new derivation of the particle velocity and acceleration on the free
surface is described in Section 3. We review the numerical methods including the quadrature
method for singular integrals in Section 4. Applications to solitary waves propagating and
breaking over a sloping ridge, and comparisons with the former model [1] are presented in
Section 5. Results on both surface and internal kinematics of overturning waves are shown.

2. MATHEMATICAL FORMULATION

Equations for a fully non-linear potential �ow with a free surface are listed in the following.
The velocity potential �(x; t) is introduced to describe an inviscid, irrotational �ow in Carte-
sian co-ordinates x=(x; y; z) with z the vertical upward direction (z=0 at the undisturbed
free surface), and the �uid velocity is expressed as u=∇�.
The continuity equation in the �uid domain �(t) with boundary �(t) is Laplace’s equation

∇2�=0 (1)

The corresponding three-dimensional free-space Green’s function is de�ned as

G(x;xl)=
1
4�r

with
@G
@n
(x;xl)=− 1

4�
r · n
r3

(2)

where r= |r|= |x− xl| is the distance from the source point x to the �eld point xl (both on
boundary �), and n is the outward unit vector normal to the boundary at point x.
Green’s second identity transforms Equation (1) into the boundary integral equation (BIE)

�(xl)�(xl)=
∫
�

[
@�
@n
(x)G(x;xl)− �(x)@G

@n
(x;xl)

]
d� (3)

where �(xl)= �l=(4�) and �l is the exterior solid angle at point xl.
The boundary is divided into various parts satisfying di�erent boundary conditions. On the

free surface, � satis�es the non-linear kinematic and dynamic boundary conditions in the
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mixed Eulerian–Lagrangian formulation, respectively

DR
Dt
= u=∇� (4)

D�
Dt
=−gz + 1

2
∇� · ∇�−p

�
(5)

with R being the position vector of a �uid particle on the free surface, g the acceleration
due to gravity, p the atmospheric pressure, � the �uid density and D=Dt= @=@t+∇� · ∇ the
Lagrangian time derivative. On the bottom and other �xed parts of the boundary, a no-�ow
condition is prescribed as

@�
@n
=0 (6)

Once Equation (3) is solved, the solution within the domain can be evaluated from the
boundary values. Using Equation (3), the internal velocity is given by

u(xl)=∇�(xl)=
∫
�

[
@�
@n
(x)Q(x;xl)−�(x)@Q@n (x;xl)

]
d� (7)

with

Q(x;xl)=
1
4�r3

r;
@Q
@n
(x;xl)=

1
4�r3

[
n−3(r · n) r

r2
]

(8)

and r denoting the distance from the boundary point x to the interior point xl. Note that the
coe�cient �(xl) reduces to unity for interior points.
Similarly, we can also derive the internal Lagrangian acceleration

Du
Dt
=
D
Dt

∇�= @
@t

∇�+ (∇� · ∇)∇� (9)

where the �rst term in the right-hand side, corresponding to the local acceleration,
is given by

∇@�
@t
(xl)=

∫
�

[
@2�
@t@n

(x)Q(x;xl)−@�@t (x)
@Q
@n
(x;xl)

]
d� (10)

and the last term is computed using Equation (7) and di�erentiating ∇�. This requires cal-
culating the spatial derivatives for all components of Q and @Q=@n. Their expressions are

@Qi
@xj

=




3
4�r5

rirj; i �= j

1
4�r3

(
3
r2
r2i − 1

)
; i= j

(11)

@
@xj

(
@Qi
@n

)
=




3
4�r5

[
rjni + rinj − 5

r2
(r · n)rirj

]
; i �= j

3
4�r5

[
r · n+ 2rini − 5

r2
(r · n)r2i

]
; i= j

(12)
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where i; j refer to the spatial dimensions and ri stands for the ith component of r. For
near-surface interior points, a special treatment is required to compute accurately the (quasi-
singular) integrals in Equations (7) and (10) (see Section 4.3). The quantities @�=@t and
@2�=@t@n in Equation (10) also satisfy a BIE similar to Equation (3) for � and @�=@n. In
fact, the calculation of their values on the free surface is done as part of the second-order
time integration method outlined in Section 4.1.

3. PARTICLE VELOCITY AND ACCELERATION

In Grilli et al. [1], a local curvilinear co-ordinate system is introduced to express the geometry,
�eld variables and their derivatives at each collocation node on the boundary. Thus, at each
nodal point x, the corresponding unit tangential vectors are de�ned as

s=
1
h1
@x
@�

and m=
1
h2
@x
@�

(13)

where

h1 =
∣∣∣∣@x@�

∣∣∣∣ ; h2 =
∣∣∣∣@x@�

∣∣∣∣ (14)

and −16�; �61 denote the intrinsic co-ordinates in the reference element. A third unit vector
in the normal direction is then de�ned as n= s×m. Grilli et al. [1] assumed that s and m
are orthogonal, and derived expressions for the particle velocity u and acceleration Du=Dt in
the co-ordinate system (s;m; n). The orthogonality of s and m however does not hold when
the boundary elements are distorted, as in regions of large surface deformations. Hereafter,
we give the derivation of tangential derivatives in the general case where s and m are not
orthogonal. It should be noted that this aspect of the discretization only concerns the time
updating of the boundary conditions on the free surface. It does not a�ect the solution of the
BEM.
Using s and m in Equation (13), one can de�ne a new unit tangential vector as (see

Figure 1)

m′=
1√
1− �2m − �√

1− �2 s (15)

so that s and m′ are orthogonal (i.e. s ·m′=0) with �= s ·m. This implies that −1¡�¡1.
The unit normal vector now takes the form

n= s×m′=
1√
1− �2 s×m (16)

One can see that m′=m and s ·m=0 only when �=0. For clarity, let us introduce the
following notations:

( )s ≡ @
@s
=
1
h1

@
@�
; ( )m ≡ @

@m
=
1
h2

@
@�
; ( )n ≡ @

@n
(17)
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Figure 1. Sketch of local interpolation by fourth-order two-dimensional sliding polynomials of (�; �),
for calculating tangential derivatives in orthogonal axis (s;m′; n) at point r on the boundary.

and

( )ss ≡ 1
h21

@2

@�2
; ( )sm ≡ 1

h1h2
@2

@�@�
; ( )mm ≡ 1

h22

@2

@�2
(18)

In the new orthonormal co-ordinate system (s;m′; n), the particle velocity on the boundary is
expressed as

u=∇�=�ss+ �m′m′ + �nn (19)

Returning to the co-ordinate system (s;m; n), Equation (19) is given by

∇�= 1
1− �2 (�s − ��m)s+ 1

1− �2 (�m − ��s)m+ �nn (20)

after using Equation (15) and the fact that

�m′ =
1√
1− �2�m − �√

1− �2�s (21)

Laplace’s equation ∇2�=0 can be similarly expressed, which leads to

�nn =− 1
1− �2 {�ss + �mm − 2��sm}

+
�s

(1− �2)2 {xss · s+ xmm · s − �xss ·m − �xmm ·m − 2�xsm · s+ 2�2xsm ·m}

+
�m

(1− �2)2 {xss ·m+ xmm ·m − �xss · s − �xmm · s − 2�xsm ·m+ 2�2xsm · s}

+
�n

1− �2 {xss · n+ xmm · n − 2�xsm · n} (22)
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Substituting Equation (22) into the expression for the particle acceleration on the boundary
yields

Du
Dt
=

(
@
@t
+∇� · ∇

)
∇�

= s
[

1
1− �2 {�ts − ��tm + �n�ns − ��n�nm}

+
1

(1− �2)2 {�s�ss − 2��s�sm + �2�s�mm

−��m�mm + (1 + �2)�m�sm − ��m�ss}

+
�2s

(1− �2)3 {−xss · s+ �xss ·m+ 2�xsm · s

−2�2xsm ·m − �2xmm · s+ �3xmm ·m}

+
�s�m

(1− �2)3 {2�xss · s − (1 + �2)xss ·m − (1 + 3�2)xsm · s

+�(3 + �2)xsm ·m+ �(1 + �2)xmm · s − 2�2xmm ·m}

+
�2m

(1− �2)3 {−�2xss · s+ �xss ·m+ �(1 + �2)xsm · s

−(1 + �2)xsm ·m − �2xmm · s+ �xmm ·m}

+
�s�n

(1− �2)2 {−�2xss · n+ 2�xsm · n − �2xmm · n}

+
�m�n

(1− �2)2 {�xss · n − (1 + �2)xsm · n+ �3xmm · n}
]

+m
[

1
1− �2 {−��ts + �tm − ��n�ns + �n�nm}

+
1

(1− �2)2 {−��s�ss + (1 + �2)�s�sm − ��s�mm

+�m�mm − 2��m�sm + �2�m�ss}

+
�2s

(1− �2)3 {�xss · s − �2xss ·m − (1 + �2)xsm · s

+�(1 + �2)xsm ·m+ �xmm · s − �2xmm ·m}

+
�s�m

(1− �2)3 {−2�2xss · s+ �(1 + �2)xss ·m+ �(3 + �2)xsm · s
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−(1 + 3�2)xsm ·m − (1 + �2)xmm · s+ 2�xmm ·m}

+
�2m

(1− �2)3 {�
3xss · s − �2xss ·m − 2�2xsm · s

+2�xsm ·m+ �xmm · s − xmm ·m}

+
�s�n

(1− �2)2 {�
3xss · n − (1 + �2)xsm · n+ �xmm · n}

+
�m�n

(1− �2)2 {−�2xss · n+ 2�xsm · n − �2xmm · n}
]

+n
[
�tn +

1
1− �2 {�s�ns − ��s�nm − ��m�ns

+�m�nm − �n�ss + 2��n�sm − �n�mm}

+
�2s

(1− �2)2 {xss · n − 2�xsm · n+ �2xmm · n}

+
2�s�m
(1− �2)2 {−�xss · n+ (1 + �2)xsm · n − �xmm · n}

+
�2m

(1− �2)2 {�
2xss · n − 2�xsm · n+ xmm · n}

+
�s�n

(1− �2)2 {xss · s − �xss ·m − 2�xsm · s

+2�2xsm ·m+ xmm · s − �xmm ·m}

+
�m�n

(1− �2)2 {−�xss · s+ xss ·m+ 2�2xsm · s

−2�xsm ·m − �xmm · s+ xmm ·m}

+
�2n

1− �2 {xss · n − 2�xsm · n+ xmm · n}
]

(23)

When �=0, formulas (20), (22) and (23) reduce to

u=�ss+ �mm+ �nn (24)

�nn =−�ss − �mm + �s(xss · s − xsm ·m) + �m(xmm ·m − xsm · s)

+�n(xss · n+ xmm · n) (25)
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and

Du
Dt
= s[�ts + �s�ss + �m�sm + �n�ns − �2sxss · s

+�2mxmm · s − �m�nxsm · n]

+m[�tm + �s�sm + �m�mm + �n�nm + �2sxss ·m

−�2mxmm ·m − �s�nxsm · n]

+n[�tn + �s�ns + �m�nm − �n(�ss + �mm) + �2sxss · n

+�2mxmm · n+ 2�s�mxsm · n+ �2n(xss · n+ xmm · n)

+�s�n(xss · s − xsm ·m) + �m�n(xmm ·m − xsm · s)] (26)

which are the expressions given in Reference [1] (Equations (60)–(62)). Note that, when
s ·m=0, one has the identities xss ·m= − xsm · s and xsm ·m= − xmm · s.

4. NUMERICAL METHODS

We only summarize here the methods for temporal and spatial discretizations. Since the only
di�erence between the former and new models lies in the calculation of tangential derivatives
on the boundary, the reader is referred to Reference [1] for more details on the numerical
methods and applications to solitary wave shoaling and breaking.

4.1. Time integration

A second-order explicit scheme based on Taylor series expansions is used to update the
position R and velocity potential � on the free surface, as

R(t +�t)=R+�t
DR
Dt

+
�t2

2
D2R
Dt2

+O(�t3) (27)

�(t +�t)=�+�t
D�
Dt

+
�t2

2
D2�
Dt2

+O(�t3) (28)

where �t is the varying time step and all terms in the right-hand sides are evaluated at time
t. First-order coe�cients in these Taylor series are given by Equations (4) and (5), which
requires calculating �, @�=@n at time t on the free surface. Second-order coe�cients are
obtained from the Lagrangian time derivative of Equations (4) and (5), which also requires
calculating @�=@t, @2�=@t@n at time t. Since the BIEs to be solved in both cases correspond to
the same boundary geometry, one needs to discretize and assemble the resulting linear system
only once.
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Global accuracy of the numerical scheme can be assessed at any time by checking the
conservation of volume

V =
∫
�
znz d� (29)

and total energy

E=
1
2
�

∫
�

(
�
@�
@n
+ gz2nz

)
d� (30)

where the �rst and second terms represent the kinetic and potential contributions of the �ow
respectively, and nz is the vertical component of the unit normal vector.

4.2. Boundary discretization

A high-order three-dimensional BEM is used to solve numerically the BIEs for � and @�=@t.
The boundary is discretized into collocation nodes, de�ning two-dimensional elements for local
interpolations of the solution in between these nodes. Thus, within each element, the boundary
geometry and �eld variables are interpolated using polynomial shape functions. The boundary
elements are 4× 4-node quadrilaterals associated with bi-cubic shape functions, ensuring local
C2 continuity at their edges.
The discretized boundary integrals are evaluated for each collocation node by numerical

integration. When the collocation node does not belong to the integrated element, a standard
Gauss–Legendre quadrature is applied. When it belongs to the element, the distance r in the
Green’s function and in its normal gradient vanishes at one of the nodes of the element. For
such singular situations, a method of singularity extraction is used based on polar co-ordinate
transformations. Tangential derivatives in Equations (27) and (28) are calculated by de�ning
fourth-order 5× 5-node elements.
As the linear algebraic system resulting from the discretization of the BIE (3) for � (and

@�=@t) is in general dense and non-symmetric, a generalized minimal residual (GMRES)
algorithm with preconditioning is used to solve it. We point out that we used the same
discretization and integration methods to solve the BIEs and compute the internal kinematics
given by the integral expressions (7) and (10).

4.3. Quadrature method for quasi-singular integrals

Integrals in Equation (3) may have a highly varying kernel when the distance r becomes small
(albeit non-zero) in the neighbourhood of a collocation point. These are then referred to as
quasi-singular integrals and a standard Gauss quadrature, with a �xed number of integration
points, may fail to accurately calculate such integrals. Grilli and Subramanya [2] showed, for
two-dimensional problems, that the loss of accuracy of Gauss integrations may be several
orders of magnitude, when the distance to the collocation point becomes very small. This loss
of accuracy should be more severe in three dimensions due to the fact that G∼1=r (compared
with G∼ ln r in two dimensions).
Situations of quasi-singular integrals generally occur near intersections of boundary parts

(e.g. between the free surface and lateral boundaries) or in regions of the free surface like
breaker jets. For such cases, Grilli et al. [1] developed an adaptive method based on a binary
subdivision of the integrated element. Integrals over the so-de�ned sub-elements are then

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:305–324



314 C. FOCHESATO, S. T. GRILLI AND P. GUYENNE

calculated using a standard Gauss quadrature (with 10 integration points) after some additional
co-ordinate transformations. To identify possible quasi-singular integrals in the discretized
domain and choose the adequate number of subdivisions, both distance and intercept angle
thresholds are checked for each reference point.
Quasi-singular integrals may also occur, even more severely, in the calculation of the in-

ternal velocity and Lagrangian acceleration for interior points close to the boundary (e.g. just
beneath the water surface or inside the breaker jet). As shown in Equations (8) and (12),
the kernels grow very fast like 1=r3 for u and 1=r4 for @u=@t as r tends to zero. Here, for
the accurate treatment of such integrals, we applied an adaptive scheme similar to that in
Reference [1]. This method, however, can be computationally costly, especially when large
numbers of subdivisions are needed for interior points very close to the boundary. In our
applications, we found that two binary subdivisions (i.e. 16 sub-elements) su�ce in most
cases.

5. NUMERICAL RESULTS AND COMPARISONS

To test the performance of the model with the new expressions for u and Du=Dt, we carry
out computations of solitary waves propagating and breaking over a sloping ridge. Computed
results and their accuracy are assessed by comparison with those obtained from the former
three-dimensional model in Reference [1] and the two-dimensional model of Grilli et al. [3].
Results on both surface and internal kinematics of overturning waves are shown.

5.1. Comparison with the former three-dimensional model

The bottom topography is speci�ed as follows: a constant depth h0 in the �rst part of the
domain and then a sloping ridge starting at x′=5:225, with a 1:15 slope in the middle and
a transverse modulation of the form sech2(ky′) (k=0:5). The computational domain is 4h0
wide and 19h0 long, with vertical walls speci�ed at its extremities and sides. Primes hereafter
indicate non-dimensional variables based on long wave theory, i.e. lengths are divided by the
reference depth h0 and times by

√
h0=g, where g is the acceleration due to gravity. The initial

condition is an exact ‘Tanaka’ solitary wave of height H ′
0 = 0:6.

The initial discretization for the bottom and free surface consists of 40× 10 quadrilateral ele-
ments in the x- and y-directions respectively (with regular grid sizes �x′

0 = 0:47, �y
′
0 = 0:40).

The initial time step is set to �t′0 = 0:18. Computations are �rst performed in this discretization
up to t′=5:7 and regridding to a �ner resolution is then applied in the portion 8:0756x′619
(�x′=0:27, �y′=0:40). Figure 2 shows the wave pro�les at t′=8:995 and t′=9:142 using
the old (in Reference [1]) and new formulas, respectively. We stress that the same experi-
mental parameters are used in both cases. One can see that both solutions reach an advanced
stage of wave overturning. However, computations with the new formulas break down at a
later time than those with the old formulas. The break down of computations is due to situa-
tions of quasi-singular integrals, associated with the phenomenon of node convergence in the
breaking jet.
Figure 3 shows the comparison of relative errors on energy and volume conservation for

the two models. In both cases, the errors exhibit similar temporal behaviours. Although there
is a gradual growth in time, they remain small up to the last computed time (less than 1%).
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Figure 2. Wave pro�les in the last computed stage at (a) t′=8:995 (old formulas) and (b) t′=9:142
(new formulas). The discretization is 40× 10 elements in the x- and y-directions, respectively.
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Figure 3. Time evolution of relative errors on (a) energy and (b) volume conservation, using the old
(solid line-circles) and new (dashed line-crosses) formulas, after regridding at t′=5:7.

The reference energy E0 and volume V0 correspond to the energy and volume levels at the
regridding time t′=5:7.
In Figure 4, we present a direct comparison in the middle cross-section y′=0 at three

di�erent stages of evolution, for which the two solutions exhibit similar free surface pro�les.
It can be seen that the two wave pro�les match almost perfectly up to the breaking point
(Figure 4(b)). The corresponding times are also nearly the same. However, as wave break-
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Figure 4. Comparison of wave pro�les in the cross-section y′=0 using
the old, new formulas (dashed, solid lines) at (a) t′=7:551; 7:554 and
(b) t′=8:349; 8:356 (breaking point) and (c) t′=8:995; 9:045, respectively.

ing develops, di�erences in time evolution and wave pro�les become more signi�cant. The
breaking jet seems to develop slightly faster when using the old formulas.
It is important to notice that both models give very similar results up to the breaking point.

As long as the free surface does not undergo signi�cant deformations, the mesh remains nearly
regular and the vectors s and m remain nearly orthogonal at all collocation nodes. Indeed,
as shown in Figure 5 (using the new formulas), the maximum magnitude of s ·m for nodes
on the free surface gradually increases with time, to reach only ∼ 0:4 at the breaking point
(t′=8:356). It then increases faster (with oscillations) as the wave overturns.
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Figure 5. Time evolution for the maximum of |s ·m| on the free surface, after regridding at t′=5:7.
The new formulas for the particle velocity and acceleration are used here.
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Figure 6. Wave pro�le in the latest computed stage at t′=8:600, using the old formulas.
The discretization is 60× 40 elements in the x- and y-directions, respectively.

Therefore, we can infer that both formulations are as equally suitable up to the break-
ing point and that formulas (24)–(26) provide very good approximations for smooth non-
overturning waves.
In order to better appreciate the di�erences between both models, we now perform computa-

tions for a larger domain and a �ner resolution. The length of the domain is 19h0 but its width
is increased to 8h0 (k=0:25). The initial wave is the same ‘Tanaka’ solitary wave of height
H ′
0 = 0:6 as before. The initial discretization is 50× 20 elements (�x′

0 = 0:38, �y
′
0 = 0:40), and

it is increased to 60× 40 elements (�x′=0:18, �y′=0:20) when regridding on 8:0756x′619
at t′=4:9. Figures 6 and 7 display the wave pro�les at t′=8:600 and 8:904; 9:142, using
the old and new formulas, respectively. High-resolution computations with the new formulas
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Figure 7. Wave pro�les in the latest computed stages at (a) t′=8:904 and (b) t′=9:142, using the
new formulas. The discretization is 60× 40 elements in the x- and y-directions, respectively.

clearly reach a more advanced stage of wave overturning than those with the old formulas.
In the former case, the smoother transverse variation for the tip of the jet better re�ects the
smooth transverse variation of the bottom geometry. The breaking process can be computed
up to near the impact of the jet onto the forward face of the wave (Figure 7(b)).
In Figure 8, the comparison of errors reveals that volume is well conserved throughout the

calculations by both models (∼ 0:01%). There is however a large improvement of up to one
order of magnitude regarding the conservation of energy. Indeed, the corresponding errors are
within 0:1% with the new formulation, while they almost reach 1% with the old one. The
faster accumulation of errors in the latter case explains why computations break down earlier
as mentioned above.
We would like to point out that, in all our computations, no (explicit) smoothing=�ltering

was used to stabilize the solution. In particular, we never observed the so-called sawtooth
instabilities on the free surface as reported in e.g. Longuet-Higgins and Cokelet [4].

5.2. Comparison with the two-dimensional model

We also found it useful to compare the new model with the two-dimensional version of
Grilli et al. [3, 5]. This two-dimensional model has been extensively tested and validated
against both theoretical and experimental results. In particular, in the case of shoaling and
breaking of solitary waves on plane slopes, it has been shown that the computations of surface
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Figure 8. Time evolution of relative errors on (a) energy and (b) volume conservation, using the old
(solid line-circles) and new (dashed line-crosses) formulas, after regridding at t′=4:9.
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Figure 9. Comparison between three-dimensional (solid line) and two-dimensional (dashed line) results
in the vertical cross-section y′=0 at t′=8:560. The discretization in the x-direction is �x′=0:10; 0:18

for the two-, three-dimensional waves, respectively.

elevations agreed to within 2% with laboratory measurements up to the breaking point (see
References [3, 6]).
Here, we specify a narrow three-dimensional domain of width 2h0 with no transverse varia-

tion in the y-direction. Both two- and three-dimensional simulations are run for a 1 : 15 bottom
slope and an initial solitary wave of height H ′

0 = 0:6, and the corresponding discretizations
in the x-direction are �x′=0:10; 0:18, respectively. Figure 9 shows the comparison between
two- and three-dimensional results in the middle cross-section y′=0 at t′=8:560. One can
see that the two wave pro�les match almost perfectly, even in the region of the breaking
jet. A similar comparison was already made in Reference [1] but could not be performed for
such an advanced stage of wave overturning. This good agreement supports the ability (and
superiority) of the new model to describe large surface deformations, even with moderate
resolutions.
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5.3. Kinematics of three-dimensional overturning waves

We present here some results on the surface and internal kinematics associated with overturn-
ing waves. The particle velocity u=∇�=(ux; uy; uz) and acceleration a=Du=Dt=(ax; ay; az)
on the free surface are computed using Equations (20) and (23). For interior points, we use
the integral expressions (7) and (9).
Figure 10 shows the surface velocity and acceleration �elds (ux; uz) and (ax; az) in the

middle cross-section y′=0. The solution at the latest time t′=9:142 is considered here (Fig-
ure 7(b)). For comparison, the linear phase speed in shallow water c=

√
gh0 and the gravity

acceleration g denote the unit speed and acceleration in our non-dimensionalization. The max-
imum velocity occurs near the tip of the jet and is found to be |u′|=1:997. The maximum
acceleration (|a′|=4:867) occurs on the front face of the wave. The near free-fall motion of
the plunging jet is clearly indicated by �uid particles with accelerations close to g and directed
downward. Note that some acceleration vectors at the tip of the jet with unacceptable mag-
nitude and direction are omitted in Figure 10(b). This is because the calculation of particle
accelerations is very sensitive to local variations of the boundary geometry (as shown in Equa-
tion (23)), and therefore inaccuracies are expected to be more signi�cant in the overturning
region.
Overall, we �nd a good agreement with existing results of two-dimensional numerical sim-

ulations of overturning waves (e.g. on uniform depth by New et al. [7] and in deep water by
Dommermuth et al. [8]). These authors observed maximum velocities as high as almost 2c
and maximum accelerations up to 5–6g on the free surface.
Figure 11 displays the internal velocity and acceleration �elds (ux; uz) and (ax; az) in the

middle cross-section y′=0 at t′=9:142. The interior points are chosen equally spaced by
�x′

i =0:10 and �z
′
i =0:05 along the x- and z-axis respectively. The maximum velocity (resp.

acceleration) that we computed is |u′|=1:974 (resp. |a′|=2:204). The quasi-uniformity of
the velocity distribution along the depth is clearly shown in Figure 11(a), which is ex-
pected for a very long wave such as a solitary wave. In contrast, the acceleration �eld
has appreciable values only in the region adjacent to the wave front face
(Figure 11(b)).
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Figure 10. Vertical cross-sections (y′=0) of the surface velocity (a) and acceleration (b) �elds at
t′=9:142. The x-axis is shifted to x′′= x′ − d′

0 (d
′
0 = 5:225). The straight line represents the bottom

pro�le. In the (z; x)-plane, the maximum velocity (resp. acceleration) is |u′|=1:997 (resp. |a′|=4:867).
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Figure 11. Vertical cross-sections (y′=0) of the internal velocity (a) and acceleration (b) �elds at
t′=9:142. The x-axis is shifted to x′′= x′ − d′

0 (d
′
0 = 5:225). The straight line represents the bottom

pro�le. In the (z; x)-plane, the maximum velocity (resp. acceleration) is |u′|=1:974 (resp. |a′|=2:204).

Transverse variations of the wave kinematics are illustrated in Figure 12, where we plot
the internal velocity and acceleration �elds (ux; uy) and (ax; ay) at z′= − 0:2 (�x′

i =0:35
and �y′

i =0:38). The maximum velocity (resp. acceleration) that we computed is |u′|=0:694
(resp. |a′|=0:589). As indicated, the propagation of the solitary wave is associated with
a forward displacement of water beneath the surface. There are some small transverse vari-
ations of both velocity and acceleration �elds due to focusing of the �ow by the
ridge.
Our results on internal kinematics of overturning waves are consistent with those obtained

by Biausser et al. [9], who used a volume of �uid=Navier–Stokes solver to simulate three-
dimensional wave breaking on slopes.
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Figure 12. Horizontal cross-sections (z′=−0:2) of the internal velocity (a) and acceleration (b) �elds
at t′=9:142. The x-axis is shifted to x′′= x′ − d′

0 (d
′
0 = 5:225). The solid curve at the right extrem-

ity represents the cross-section of the sloping ridge. In the (x; y)-plane, the maximum velocity (resp.
acceleration) is |u′|=0:694 (resp. |a′|=0:589).

6. CONCLUSIONS

A more general derivation of tangential derivatives used in the numerical wave model of
Grilli et al. [1] has been given by considering a local orthogonal co-ordinate system. We have
derived new expressions for the particle velocity and acceleration on the free surface, which
are required for the time updating. As a test, computations of solitary waves propagating
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and breaking over a sloping bottom have been carried out. Our results show a signi�cant
improvement on the former model [1] for the simulation of overturning waves. Computations
with the new model are more accurate in terms of conservation of energy, and more stable in
the sense that, for a given grid resolution, they reach a more advanced stage of wave breaking.
Nevertheless, we �nd that the two formulations give very similar and accurate results in the
case of non-overturning waves.
The kinematics of overturning waves have also been examined, both on the free surface and

within the �ow. Our results for maximum velocity (∼ 2c) and acceleration (∼ 5g) computed
on the free surface are consistent with the two-dimensional results reported by New et al.
[7] and Dommermuth et al. [8]. In fact, there are strong similarities in both wave pro�les
and kinematics between plunging breakers in the present case and those computed in the two
works cited previously.
The present model has been shown to be suitable for the numerical simulation of highly non-

linear three-dimensional water waves, like overturning waves. A few typical results of physical
interest, that can be calculated with our model, have been analysed. More in-depth numerical
computations have been made, to achieve a better understanding of these phenomena. Since
such computations constitute a substantial contribution in their own right, they will be reported
in a separate paper.
Finally, it should be mentioned that distortions of boundary elements can be greatly reduced

by increasing the grid resolution, which suggests that the same results could be obtained using
the old formulas with a �ner mesh. This would require, however, to specify a prohibitively
large number of nodes on the free surface, especially when computing strongly non-linear
waves. Our calculations already span several hundreds of time steps and the CPU time is typ-
ically O(10) minutes per time step on a single processor of a Compaq Alpha GS160 computer.
As far as the resolutions we used here are concerned, we observe no substantial improvement
when re�ning the spatial discretization in the former model (compare Figures 2(a) and 6).
This has also been shown in Reference [1]. Hence, we conclude that the new formulation
should be used when modelling highly non-linear and overturning waves.
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